تعیین غلظت محلول FeSO4با محلول پتاسیم دی کرومات 1/0 نرمال
شیمیدانان جوان

نام و نام خانوادگی:محمد مهدی محمودی وند                                     تاریخ:13/11/1392

عنوان آزمایش:سنجش های حجمی اکسایش_کاهش

هدف آزمایش:تعیین غلظت محلول FeSO4با محلول پتاسیم دی کرومات 1/0 نرمال

مواد و ابزار لازم:پتاسیم پر منگنات ، پتاسیم اگسالات ، اسید سولفوریک ، ارلن مایر ، بورت ، چراغ گاز ، پایه ، گیره

 

تئوری آزمایش:

مقدمه:

تيتراسيونهاي اكسايش-كاهش مانند تيتراسيونهاي اسيدوباز مي باشند با اين تفاوت كه تيتراسيونهاي اكسايش-كاهش بر مبناي انتقال الكترون استوار مي باشند و همانطور كه مي دانيم عامل اكسنده ،احيا مي شود وعامل كاهنده ،اكسيد مي شود.

تیتراسیون های اکسید – احیا
تیتراسیون های کاهشی مدت کوتاهی بعد از تیتراسیون اسید و باز معرفی و شناخته شدند. در اولین متد ها از قدرت اکسید کنندگی در آب (مخلوطی از ) برای تعیین کمی آن استفاده می شد.
به مرور متد های تیتراسیون اکسایش – کاهش با معرفی به عنوان تیترانتهای اکسید کننده و به عنوان تیترانتهای کاهشی، رو به افزایش نهاده به هر حال کاربرد تیتراسیون کاهشی برای گستره وسیعی از نمونه ها بخاطرکمبود محلول های شناساگر محدود می شد.
تیترانتهایی که در فرم های اکسایشی و کاهشی خودشان رنگ های متفاوتی داشتند می توانستند به عنوان اندیکاتور خودشان نیز استفاده شوند. به عنوان مثال رنگ ارغوانی به عنوان رنگ شناساگر در نظر گرفته می شد از آن جائی که وقتی به کاهش می یافت رنگ آن نیز بی رنگ می شد.
ولی به هر حال دیگر تیترانتها نیاز به یک شناساگر چشمی داشتند که به محلول اضافه شود. یکی از اولین این شناساگر دی فنیل آمین بود که در دهه 1920 معرفی شد و به مرور با افزایش این شناساگر ها کاربرد تیتراسیون های اسید احیا نیز بیشتر شد.
منحنی های تیتراسیون های اکسایش – کاهش
برای ارزیابی تیتراسیون های اکسید – احیا باید شکل منحنی را بشناسیم. در یک تیتراسیون اسید – باز یا یک تیتراسیون کمپلکسومتری منحنی تیتراسیون تغییر در غلظت ( به عنوان PH) یا (به عنوان PM) را در برابر تغییرات حجم واکنشگر یا تیتر کننده را نشان می دهد. برای تیتراسیون اکسید – احیا باید نیروی پتانسیل شیمیایی را در برابر حجم مونتیور کرد. برای مثال، درنظر بگیرید یک تیتراسیون که در آن آنالیت در یک شکل
کاهش یافته، ، به وسیله یک تیتر کننده در فرم اکسید شونده آن تیتر می گردد. واکنش تیتراسیون به صورت زیر است:
پتانسیل برای این واکنش از اختلاف میان پتانسیل های احیا برای نیمه واکنش های اکسید و احیا به دست می آید، بنابراین:
بعد از هر اضافه کردن تیترانت، واکنش بین آنالیت و تیترانت به حالت تعادل می رسد پس پتانسیل الکترو شیمیایی واکنش، ، صفر می گردد و متعاقباً، پتانسیل برای هر دو نیم واکنش را می توان برای مونیتور کردن پیشرفت واکنش استفاده کرد. قبل از نقطه پایانی مخلوط تیتراسیون شامل مقادیر پذیرفنتی از شکل های اکسید و احیا آنالیت می باشد، اما حاوی مقدار خیلی کمی از تیترانت که هنوز واکنش نداده می باشد. بنابراین، بهتر است که از معادله نرنست نیم واکنش آنالیت استفاده شود.
بعد از نقطه پایانی استفاده از نیم واکنش تیترانت برای تشکیل معادله نرنست آسان تر است از آن جائی که مقدار کافی از شکل های احیا و اکسید موجود هستند.
محاسبه منحنی تیتراسیون:
به عنوان مثال منحنی تیتراسیون را برای تیتراسیون محلول با استفاده از محلول نرمال محاسبه می کنیم.
ثابت تعادل این واکنش بسیار بزرگ است (در حدود ) بنابراین ما می توانیم فرض کنیم که آنالیت و تیترانت کاملاً با هم واکنش می دهند.
در ابتدا مقدار حجم مورد نیاز را برای رسیدن به نقطه اکی والان محاسبه می کنیم. در نقطه پایانی، داریم
پس برای رسیدن به نقطه پایانی لازم است در این جا چون 1 = n است. نرمالیته ومولاریته با هم برابرند. قبل از نقطه اکی والان از پتانسیل نیم واکنش آنالیت برای محاسبه استفاده می کنیم.
محاسبه غلظت های بعد از اضافه کردن محلول
از نقطه اکی والان تعداد مول های موجود و مول های اضافه شده، با هم برابرند برای به دست آوردن ، دو معادله نرنست () را با هم جمع می کنیم. ابتدا دو نیم واکنش را می نویسیم.
محل نقطه اکی والان:
هر چه واکنش کاملتر باشد، تغییر در پتانسیل الکترود سیستم بزرگتر است و نقطه هم ارزی مشخص تر.
در تیتراسیون های اسیدباز و تیتراسیون های کمپلکسومتری، نقطه پایانی تقریباً در نقطه خم منحنی در هنگامیکه منحنی به سمت بالا می رود قرار دارد و این نقطه تقریباً در وسط منحنی قرار دارد و این باعث می شود که پیدا کردن آن آسان باشد و آن را یک نقطه اکی والان تقارنی یا متقارن می نامیم.
هنگامی که استوکیومتری یک واکنش اکسید – احیا متقارن باشد (یک مول آنالیت برابر یک مول تیترانت) باشد، منحنی نیز متقارن است اما اگر استوکیومتری متقارن نباشد نقطه پایانی در وسط قرار نمی گیرد و ممکن است به بالاتر یا پایین تر منتقل گردد. در این حالت نقطه اکی والان را غیر متقارن می نامند.
تشخیص نقطه پایانی با استفاده از شناساگر ها
سه نوع از شناساگر ها برای تشخیص نقطه پایانی تیتراسیون های کاهشی استفاده می شود. بعضی از تیترانتها، مانند ، در حالت اکسایش و کاهش در محلول رنگ های کاملاً متفاوتی دارند. محلول کاملاً ارغوانی می باشد، در محلول های اسیدی، به شکل کاهش یافته آن، ، بی رنگ است. هنگامی که به عنوان تیتران اکسید کننده استفاده می شود محلول بی رنگ باقی مانده تا اولین قطره اضافه به محلول اضافه شود اولین حالت و طنین ماندگار رنگ ارغوانی نشانه رسیدن به نقطه پایانی است.
بعضی از مواد حالت اکسید و یا کاهش نمونه را تشخیص و معلوم می کنند. برای مثال، نشاسته با تشکیل کمپلکس آبی تیره می دهد که می تواند به عنوان علامتی برای حضور اضافه باشد (تغییر رنگ. بی رنگ به آبی)، یا تکمیل یک واکنش که در آن مصرف می شود. (تغییر رنگ: آبی به بی رنگ) مثال دیگری از شناساگر های خاص تیوسیانات است که تشکیل یک کمپلکس محلول قرمز رنگ ، با می دهد. مهمترین خاصیت شناساگر این است که نباید در واکنش احیا رسوب کنند و در حالت اکسایش و کاهش تغییر رنگ متفاوتی از خود نشان دهند. نیم واکنشی که باعث تغییر رنگ یک شناساگر اکسایش یا کاهش می شود به صورت زیر است:
اگر فرض کنیم که وقتی تغییر رنگ شناساگر از حالت به رخ می دهد. که نسبت غلظت های آن از تا باشد معادله به صورت زیر در می آید.
یک بار به جای و بار دیگر می گذاریم
کاربرد های عملی: یکی از کاربرد های عملی یدومتریاست کهازتیوسولفات برای اندازه گیری مقدار ید آزاد شده طبق واکنش زیر استفاده می شود:
تیتراسیون های اکسیداحیا برای آنالیز گستره وسیعی از آنالیز های معدنی استفاده می شوند که کاربرد هایی در بهداشت عمومی، محیط زیست و آنالیز های صنعتی دارد. یکی از مهمترین کاربرد های این نوع واکنش ها، ارزیابی مقدار کلریناسیون منابع تعیین آب می باشد که به وسیله تعیین مقدار کلکلر باقی مانده در آب به دست می آید و در آن ازقدرت اکسید کنندگی کلر برای اکسید کردن به استفاده می شود مقدار به وسیله تیتراسیون برگشتی با تعیین می گردد. که شناساگر آن N و N – دی اتیلن – P – فنیلن دی آمین و (DPD)می باشد که تغییر رنگ آن به قرمز می باشد. دیگر کاربرد این نوع واکنش ها، اندازه گیری مقدار اکسیژن حل شده می باشد در عملیات های آب و پساب کنترل اکسیژن حل شده برای اکسیداسیون هوازی مواد زائد لازم می باشد. اگر مقدار اکسیژن حل شده به زیر نقطه بحرانی برسد. باکتری های هوازی با باکتری های غیر هوازی جا به جا می شوند و اکسیداسیون مواد زائد آلی تولید گاز های نامطلوب می کنند.
از دیگر استفاده این واکنش ها برای تعیین آنالیت های آلی است که مهمترین آن ها اندازه گیری COD در آب و پساب ها می باشد. COD عبارت است ازاندازه گیری مقدار اکسیژن برای کامل کردن اکسیداسیون همه مواد آلی در نمونه به و آب.COD به وسیله رفلاکس نمونه در حضور مقدار اضافی به عنوان عامل اکسید کننده تعیین می گردد.
به طور کلی عوامل اکسید کننده مانند ، ، و استفاده می شود برای تیتر کردن آنالیت هایی که در حالت احیا خود موجود باشند. اگر آنالیت در حالت اکسایش باشد می توان آن را به وسیله یک عامل احیا کننده کمکی احیا کرد و سپس با تیتران های اکسید کننده تیتر کرد.

اکسایش-کاهش

چند واکنش اکسایش و کاهش

اُکسایــِش و کاهش (به انگلیسی: Redox) نام کلی واکنش‌های شیمیایی است که مایه تغییر عدد اکسایش اتم‌ها می‌شوند. این فرایند می‌تواند دربرگیرنده واکنش‌های ساده‌ای همچون اکسایش کربن و تبدیل آن به کربن دی‌اکسید و کاهش کربن و تبدیل آن به متان و یا واکنش‌های پیچیده‌ای چون اکسایش قند در بدن انسان طی واکنش‌های چند مرحله‌ای باشد. با کمی اغماض علمی می‌توان این فرایند را انتقال یک یا چند الکترون از یک اتم، مولکول یا یون به یک اتم، ملکول یا یون دیگر دانست. در هر واکنش اکسایش و کاهش اتم یا مولکولی الکترون از دست می‌دهد (اکسایش) و اتم یا مولکولی دیگر الکترون جذب می‌کند (کاهش) می‌یابد. در چنین واکنشی مولکول دهنده اتم اکسیده شده و ملکول گیرنده کاهیده می‌شود. در واقع تعریف ابتدایی اکسایش واکنش یک ماده با اکسیژن و ترکیب شدن با آن بوده‌است، اما با کشف الکترون اصطلاح اکسایش دقیق‌تر تعریف شد و کلیه واکنش‌هایی که طی آن ماده‌ای الکترون از دست می‌دهد اکسایش نامیده شدند. اتم‌اکسیِژن می‌تواند در چنین واکنشی شرکت داشته یا نداشته باشد.

در اثر اکسایش عدد اکسایش معمولی یک اتم یا اتم‌های یک مولکول در پی حذف الکترون‌ها افزایش می‌یابد. برای نمونه آهن (II) می‌تواند به آهن (III) اکسید شود.

-Fe2+ → Fe3+ + e

عامل اکساینده و عامل کاهنده

دو بخش واکنش اکسایش و کاهش.

زنگ زدن آهن.

اکسایش و کاهش به تنهایی انجام پذیر نیستند. چون یک ماده نمی‌تواند کاهیده شود مگر آن که هم‌زمان ماده‌ای دیگر، اکسیده گردد، ماده کاهیده شده، عامل اکسایش است و بنابراین عامل اکسنده نامیده می‌شود و ماده‌ای که خود اکسید می‌شود، عامل کاهنده می‌نامیم. همچنین در هر واکنش، مجموع افزایش اعداد اکسایش برخی عناصر، باید برابر مجموع کاهش شماره اکسایش عناصر دیگر باشد. برای نمونه در واکنش گوگرد و اکسیژن، افزایش شماره اکسایش گوگرد، ۴ است. کاهش شماره اکسایش، ۲ است، چون دو اتم در معادله شرکت دارد، کاهش همه، ۴ است.

موازنه واکنش‌های اکسایش و کاهش

واژهٔ اکسایش، ابتدا در مورد واکنش‌هایی به کار گرفته می‌شد که در آنها مواد با اکسیژن ترکیب می‌شدند، و کاهش نیز به صورت حذف یک اکسیژن از یک ترکیب اکسیژن دار تعریف می‌شد. اما معنی این واژه‌ها به تدریج گسترش یافت. امروزه، اکسایش و کاهش، بر مبنای تغییر عدد اکسایش تعریف می‌شوند. اکسایش فرایندی است که در آن عدد اکسایش یک اتم افزایش می‌یابد و کاهش فرایندی است که در آن عدد اکسایش یک اتم کاهش می‌یابد. برای مثال در واکنش زیر اتم S اکسیده شده (پس کاهنده‌است) و اتم O کاهیده شده (پس اکسنده‌است) است. چون که عدد اکسایش اتم S از صفر به 4+ و عدد اکسایش اتم O از صفر به 2- تغییر کرده‌است.

و همچنین واکنش زیر شامل اکسایش - کاهش نیست، چونکه عدد اکسایش هیچ اتمی تغییر نکرده‌است:

معمولاً موازنه واکنش‌هایی که شامل اکسایش - کاهش که کاکس نامیده می‌شود، دشوارتر از موازنهٔ واکنش‌هایی است که شامل اکسایش - کاهش نیست. برای موازنهٔ واکنش‌های اکسایش - کاهش از دو روش متداول استفاده می‌شود :

روش یون - الکترون

روش عدد اکسایش

روش یون - الکترون

آتش‌گیری شامل واکنش اکسایش و کاهش است که رادیکال‌های آزاد در آن نقش دارند..

  1. 1.      معادله را به دو معادلهٔ جزیی تقسیم می‌کنیم. اتم‌هایی را که عدد اکسایش خود را در هر یک از معادله‌های جزیی تغییر می‌دهند، موازنه می‌کنیم.
  2. 2.      اتم‌های O و H را در هر یک از معادله‌های جزیی موازنه می‌کنیم.
  • برای واکنشهایی که در محلول اسیدی انجام می‌شوند :

الف) برای اتم O مورد نیاز، یک به آن طرف معادله جزئی که کمبود O دارد، اضافه می‌کنیم.

ب) و H را هم با افزودن ، موازنه می‌کنیم.

برای واکنش‌هایی که در محلول بازی انجام می‌شوند :

الف) برای هر اتم O مورد نیاز، یک به آن طرف معادله جزئی که کمبود O دارد اضافه می‌کنیم.

ب) به ازای هر اتم H مورد نیاز، یک به ان طرف معادله جزئی که کمبود H دارد اضافه می‌کنیم و یک نیز در سمت مقابل قرار می‌دهیم.

  1. 1.      به هر یک از معادله‌های جزئی الکترون اضافه می‌کنیم تا بار خالص در سمت چپ معادله با بار خالص در سمت راست معادله برابر شود.
  2. 2.      در صورت لزوم یکی یا هر دو معادلهٔ جزئی را در عددی ضرب می‌کنیم تا تعداد الکترون‌های گرفته شده درمعادله جزئی دیگر برابر شود.
  3. 3.      معادله‌های جزئی را با هم جمع می‌زنیم، همچنین عبارت‌های مشترک در دو طرف معادله نهایی را جذف می‌کنیم.

مثال

واکنش زیر را که در محلول اسیدی انجام می‌شود را موازنه می‌کنیم :

  • معادله را به دو معادله جزئی تقسیم می‌کنیم و اتم‌های را در هر کدام موازنه می‌کنیم :
  • اولین معادله جزئی را می‌توان با افزودن به سمت راست و به سمت چپ، موازنه کرد. در معادله جزئی دوم باید به سمت چپ اضافه شود تا تعداد اکسیژن موازنه شود و همچنین با اضافه کردن به سمت راست، تعداد هیدروژن هم موازنه می‌شود :
  • اولین معادله را در 8 و دومی را در 5 ضرب می‌کنیم :
  • حالا معادله‌ها را با هم جمع می‌زنیم و عبارت‌های مشترک را در دو طرف، حذف می‌کنیم :

روش عدد اکسایش

در روش عدد اکسایش برای موازنه کردن واکنش‌های اکسایش - کاهش، سه مرحله وجود دارد. معادلهٔ واکنش نیتریک اسید و هیدروژن سولفید را برای نمایش این روش به کار می‌گیریم. معادلهٔ واکنش موازنه نشده به قرار زیر است :

عدد اکسایش اتم‌ها را برای شناسایی اتم‌هایی که دست خوش اکسایش - کاهش می‌شوند، تعیین می‌کنیم. که به این ترتیب نیتروژن کاهیده شده (از 5+ به 2+، کاهشی برابر 3) و گوگرد اکسیده شده (از 2- به صفر، افزایشی برابر 2) است.

ضرایب به گونه‌ای اضافه می‌شوند که کاهش کل و افزایش کل در عدد اکسایش برابر شود. افزایشی برابر با 2 و کاهشی برابر با 3 داریم که در معادله موازنه نشده آمده‌است. کوچکترین حاصلضرب مشترک 3 و 2 عدد 6 است. در نتیجه و (برای کاهش کل 6) و(برای افزایش کل 6) به کار می‌گیریم :

توجه داریم که اکنون هشت اتم هیدروژن در سمت چپ معادله داریم. با قرار دادن در سمت راست، می‌توان به همان تعداد اتمH رسید :

 

نکات مربوط به سنجش حجمی اکسایش – کاهش به روش پرم

پتاسیم پرمنگنات تقریبا بین تمام عوامل اکسنده استاندارد بیشترین کاربرد را دارد چون

1-     رنگ محلول این ماده به اندازه ای شدید است که معمولا به شناساگر نیازی ندارد .

2-    واکنشگر به آسانی در دسترس است .

3-    ارزان است .

اشکالاتی که استفاده از این شناساگر همراه دارد :

1-    تمایل شدیدی به اکسایش یون کلرید دارد (هیدرو کلریک اسید کاربرد زیادی دارد )

2-    پایداری محدود دارند .

تهیه و نگهداری محلول های پرمنگنات :

برای تهیه محلول پرمنگنات با پایداری مناسب باید چند نکته را رعایت کرد :

1-    مهم ترین متغیری که بر پایداری محلول پرمنگنات اثر می گذارد اثر کاتالیزی منگنز دی اکسید است . این ترکیب هنگام تهیه محلول پرمنگنات در اثر اکسایش مواد آلی موجود در آب توسط پرمنگنات تولید می شود . هم چنین آلوده کننده اجتناب ناپذیر پتاسیم پرمنگنات جامد است .

برای خارج کردن این ماده باید محلول حاصل صاف شود . البته قبل از صاف کردن محلول باید وقت کافی برای کامل شدن اکسایش آلوده کننده موجود در آب داده شود . به همین خاطر برای تسریع فرایند اکسایش محلول را می جوشانند .

2-    برای صاف کردن از کاغذ نمی توان استفاده کرد چون در اثر ترکیب با یون پرمنگنات ، منکنز دی اکسید تولید می شود.

3-    تجزیه پرمنگنات به وسیله نور، گرما ، اسیدها، بازها ، یون منگنز (II) و منگنز دی اکسد تسریع می شود. باید برای پایداری محلول پرمنگنات ، تاثیر عوامل فوق را به حداقل رساند.

4-    در حضور یون منگنز تجزیه محلول های پرمنگنات تسریع می شود و از آن جایی که این یون فراورده تجزیه است ، این جسم اثر خود کاتالیزور دارد.

5-    محلول های استاندارد شده را باید در تاریکی نگاه داشت .

6-    در هنگاخ تیتراسیون ، اگر در بورت لکه قهوه ای مشاهده شد(تولید منگنز دی اکسید) باید محلول را خارج کرده و مجددا صاف کرد ..

 

 

روش کار:

برای تعیین غلظت محلول FeSO4با محلول پتاسیم دی کرومات 1/0 نرمال به صورت زیر عمل می کنیم:

ابتدا محلول پتاسیم دی کرومات(K2Cr2o7)1/0 نرمال را با توجه به تهیه ساخت در کتاب درست می کنیم و حجم معینی از آن را درون بورت می ریزیم. بعد درون یک ارلن 10 سی سی از سولفات آهن(FeSO4) که نرمالیته آن را نداریم و میخواهیم بدست آوریم می ریزیم سپس 2 سی سی اسید سولفوریک(H2SO4) 6 نرمال به داخل ارلن می ریزیم. حدود 5/0 سی سی فسفریک اسید(H3PO4) غلیظ به آن اضافه می کنیم و چند قطره شناساگر به آن اضافه می کنیم.

حال شروع می کنیم به تیتر کردن، ابتدا محلول بی رنگ است و هر دفعه که پتاسیم دی کرومات به داخل ارلن اضافه می شود رنگ محلول بنفش رنگ شده و دوباره بی رنگ می شود تا جایی که رنگ محلول بین بنفش و آبی کم رنگ ثابت می ماند که در این لحظه حدودا 4 سی سی پتاسیم دی کرومات استفاده شده است. تیتر کردن را ادامه می دهیم تا جایی که رنگ محلول ارغوانی شدید یا بنفش آبی پر رنگ شده و دیگر اضافه کردن پتاسیم دی کرومات دیگر تاثیری در رنگ محلول نداشته باشد که در این لحظه حدودا 10 سی سی از پتاسیم دی کرومات استفاده شده است. حال این آزمایش را چند بار دیگر انجام می دهیم تا به یک حجم ثابت در پتاسیم دی کرومات برسیم.

محاسبات:

N1×V1=N2×V2

N1×10=0/1×10

N1=

نرمالیته سولفات آهن                       N1=0/1

نتیجه گیری: نتیجه می گیریم که با این آزمایش می توان نرمالیته سولفات آهن  را بدست آوریم که 1/0 نرمال است.

مواردخطا: 1-خطای دید  2- خالص نبودن مواد  3- کثیف بودن وسائل

   www.njavan.com وfa.wikipedia.orgوwww.matlabgah.comمنابع: سایت 

 

chemical- fany.blogfa.com و



نظرات شما عزیزان:

نام :
آدرس ایمیل:
وب سایت/بلاگ :
متن پیام:
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

 

 

 

عکس شما

آپلود عکس دلخواه:





پيوندها
  • جی پی اس موتور
  • جی پی اس مخفی خودرو

  • تبادل لینک هوشمند
    برای تبادل لینک  ابتدا ما را با عنوان شیمی و آدرس shimidananahm.LXB.ir لینک نمایید سپس مشخصات لینک خود را در زیر نوشته . در صورت وجود لینک ما در سایت شما لینکتان به طور خودکار در سایت ما قرار میگیرد.








نام :
وب :
پیام :
2+2=:
(Refresh)

<-PollName->

<-PollItems->

خبرنامه وب سایت:





آمار وب سایت:  

بازدید امروز : 7
بازدید دیروز : 1
بازدید هفته : 7
بازدید ماه : 359
بازدید کل : 32128
تعداد مطالب : 44
تعداد نظرات : 5
تعداد آنلاین : 1